organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-{3-[2-(4-Fluorophenoxy)ethyl]-2,4dioxo-1,3-diazaspiro[4.5]decan-7-yl}-4methylbenzamide

M. Vinduvahini,^a Binoy Krishna Saha,^b Mahalakhmi,^c H. D. Revanasiddappa^d and H. C. Devarajegowda^{c*}

^aDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, ^bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, ^cDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and $^{\mathbf{d}}$ Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006. Karnataka, India

Correspondence e-mail: devarajegowda@yahoo.com

Received 7 March 2011; accepted 12 May 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.052; wR factor = 0.135; data-to-parameter ratio = 13.7.

In the title compound, C₂₄H₂₆FN₃O₄, the two aromatic rings form a dihedral angle of 88.81 (15)°. The cyclohexane ring adopts a chair conformation and the five-membered ring is essentially planar, with a maximum deviation from planarity of 0.041 (2) Å. The crystal structure displays intermolecular C- $H \cdots O$ and $N - H \cdots O$ hydrogen bonds.

Related literature

For the biological activity of related compounds, see: Cartwright et al. (2007); Collins (2000); Warshakoon et al. (2006). For the pharmaceutical activity of related compounds, see: Kiselyov et al. (2006); Sakthivel & Cook (2005); Eldrup et al. (2004); Bamford et al. (2005); Puerstinger et al. (2006). For reference bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$C_{24}H_{26}FN_{3}O_{4}$	$\gamma = 107.417 \ (18)^{\circ}$
$M_r = 439.48$	V = 1134.5 (4) Å ³
Triclinic, P1	Z = 2
a = 9.1436 (17) Å	Mo $K\alpha$ radiation
b = 10.103 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 13.939 (2) Å	T = 293 K
$\alpha = 99.239 \ (15)^{\circ}$	$0.22 \times 0.15 \times 0.12 \text{ mm}$
$\beta = 106.550 \ (14)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur	
diffractometer	
Absorption correction: multi-scan	
(CrysAlis PRO RED; Oxford	
Diffraction, 2010)	
$T_{\rm min} = 0.770, T_{\rm max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	289 parameters
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 0.90	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
3967 reflections	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N7 - H7 \cdots O5^{i}$ $N8 - H8 \cdots O4^{ii}$ $C27 - H27 \cdots O4^{ii}$	0.86	2.06	2.892 (3)	163
	0.86	2.22	3.060 (3)	165
	0.93	2.45	3.370 (3)	172

7145 measured reflections 3967 independent reflections

 $R_{\rm int} = 0.045$

2163 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, -y + 2, -z.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010): cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2425).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bamford, M. J., et al. (2005). Bioorg. Med. Chem. Lett. 15, 3402-3406.
- Cartwright, M. W., Sandford, G., Bousbaa, J., Yufit, D. S., Howard, J. A. K., Christopher, J. A. & Miller, D. D. (2007). Tetrahedron, 63, 7027-7035.
- Collins, I. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2845-2861.
- Eldrup, A. B., et al. (2004). J. Med. Chem. 47, 5284-5297.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kiselyov, A. S., Semenova, M., Semenov, V. V. & Piatnitski, E. (2006). Bioorg. Med. Chem. Lett. 16, 1726-1730.
- Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.

Puerstinger, G., Paeshuyse, J., Herdewijn, P., Rozenski, J., Clercq, D. & Neyts, J. (2006). *Bioorg. Med. Chem. Lett.* **16**, 5345–5349.
Sakthivel, K. & Cook, P. D. (2005). *Tetrahedron Lett.* **46**, 3883–3887.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Warshakoon, N. C., Wu, S., Boyer, A., Kawamoto, R., Sheville, J., Renock, S., Xu, K., Pokross, M., Evdokimov, A. G., Walter, R. & Mekel, M. (2006). *Bioorg. Med. Chem. Lett.* 16, 5598–5601.
- Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Acta Cryst. (2011). E67, 01440-01441 [doi:10.1107/S1600536811017946]

N-{3-[2-(4-Fluorophenoxy)ethyl]-2,4-dioxo-1,3-diazaspiro[4.5]decan-7-yl}-4-methylbenzamide

M. Vinduvahini, B. K. Saha, Mahalakhmi, H. D. Revanasiddappa and H. C. Devarajegowda

Comment

One of the challenges of medicinal chemistry is the promotion of structural diversity, which can be achieved by the attachment of pharmacophoric groups to the significant molecular scaffold in combinatorial chemistry. Examples of such a process include *di* and *tri*-substituted hydantoins, which have been widely used in biological screenings, resulting in numerous pharmaceutical applications (Cartwright *et al.*, 2007; Collins, 2000; Warshakoon *et al.*, 2006). Hydantoin analogues have shown versatile therapeutic applications and some of them have been approved as drugs. For example, fosphenytoin as a sodium channel antagonist is used for the treatment of epilepsy. Phenytoin has antiarrhythmic, anticonvulsant, and antineuralgic activities. Ethotoin and mephenytoin both show anticonvulsant effects. Nilutamide is used in the treatment of prostate cancer (Kiselyov *et al.*, 2006; Sakthivel & Cook, 2005; Eldrup *et al.*, 2004; Bamford *et al.*, 2005; Puerstinger *et al.*, 2006).

The asymmetric unit of N-(3-(2-(4-fluorophenoxy)ethyl)-2,4- dioxo-1,3-diazaspiro[4.5]decan-7-yl)-4-methylbenzamide, C₂₄H₂₆FN₃O₄, contains just one molecule (Fig. 1). The two benzene rings (C9–C14) and (C26–C31) form a dihedral angle of 88.81 (15)°. The cyclohexane (C19–C24) ring adopts a chair conformation, and the five-membered ring is essentially planar, with a maximum deviation from planarity of 0.041 (2) Å for atom C17. Bond lengths (Allen *et al.*, 1987) and angles are normal.

The crystal structure displays intermolecular hydrogen bonds C27—H27···O4, N7—H7···O5 and N8—H8···O4 (Table 1 and Fig. 2). The packing of molecules in the crystal structure is depicted in Fig. 2.

Experimental

tert-Butyl 4-oxocyclohexylcarbamate (5 g, 0.251 mol) and ammonium carbonate (4.99 g, 0.051 mol) were taken up in methanol (20 ml) and water (20 ml). A solution of sodium cyanide (2.41 g, 0.049 mol) in water (10 ml) was added dropwise and the reaction mixture stirred at RT for 24 hrs. It was then heated to 323 K for 2 days and cooled to RT. The resulting solid was filtered, washed with water and dried to yield hydantoin. This was taken up in acetonitrile (50 ml), K₂CO₃ (3.28 g, 0.023 mol) and 1-(2-bromoethoxy)-4- fluorobenzene (4.17 g, 0.019 mol) was added. The reaction mixture was heated at 358 K for 6 hrs, cooled to RT and filtered. The filtrate was concentrated to yield a white solid. The *tert*-butyl dicarbonate (BOC) was deprotected using dioxane-HCl (10 ml) and it was basified to obtain the free amine. The solid thus obtained was taken up (100 mg, 0.311 mmol) in dichloromethane (2 ml), and Et₃N (0.2 ml) added. The mixture was then added to 4-methylbenzoyl chloride (57.7 mg, 0.373 mmol) and stirred at RT overnight. It was extracted in dichloromethane, concentrated, and purified using column chromatography over silica gel to yield the title compound (50 mg, 36.7%).

Refinement

All H atoms were placed at calculated positions and refined using a riding model. N—H = 0.86 Å, C—H = 0.98 Å for methine, C—H = 0.97 Å for methylene, C—H = 0.93 Å for Csp² and C—H = 0.96 Å for methyl. $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $1.2U_{eq}(C, N)$ for all other H atoms.

Figures

Fig. 1. The title molecular structure with displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radius.

Fig. 2. A view of the crystal structure, viewed down the *a* axis. Dashed lines indicate hydrogen bonds.

N-{3-[2-(4-Fluorophenoxy)ethyl]-2,4-dioxo-1,3-diazaspiro[4.5]decan-7-yl}-4-methylbenzamide

2163 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.045$

Crystal data	
C ₂₄ H ₂₆ FN ₃ O ₄	Z = 2
$M_r = 439.48$	F(000) = 464
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.287 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Melting point: 419 K
<i>a</i> = 9.1436 (17) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>b</i> = 10.103 (2) Å	Cell parameters from 3967 reflections
c = 13.939 (2) Å	$\theta = 2.7 - 25.0^{\circ}$
$\alpha = 99.239 (15)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 106.550 \ (14)^{\circ}$	T = 293 K
$\gamma = 107.417 \ (18)^{\circ}$	Prism, colourless
$V = 1134.5 (4) \text{ Å}^3$	$0.22\times0.15\times0.12~mm$
Data collection	
Oxford Diffraction Xcalibur diffractometer	3967 independent reflections

graphite

Radiation source: fine-focus sealed tube

Detector resolution: 15.9821 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010)	$k = -12 \rightarrow 12$
$T_{\min} = 0.770, T_{\max} = 1.000$	$l = -16 \rightarrow 16$
7145 measured reflections	
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

· · · · · · · · · · · · · · · · · · ·	•
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.135$	H-atom parameters constrained
<i>S</i> = 0.90	$w = 1/[\sigma^2(F_o^2) + (0.0758P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
3967 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
289 parameters	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

¹H NMR 400 MHz, DMSO-d₆: δ 9.00 (s, 1H), 8.18 (d, J = 8.12 Hz, 1H), 7.72 (d, J = 8.16 Hz, 2H), 6.87–7.25 (m, 6H), 4.12 (q, J = 5.76 Hz, 3H), 3.71 (t, J = 5.84 Hz, 2H), 2.49–2.51 (m, 1H), 2.34 (s, 3H), 1.13–1.85 (m, 7H); MS:m/z 439.5 (*M*+), 440.5 (*M*+1); Anal.calcd for C₂₄H₂₆FN₃O₄: C, 65.59; H, 5.96; N, 9.56%; Found: C, 65.54; H, 5.92; N, 9.53%.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
F1	-0.5189 (2)	1.1248 (2)	-0.66068 (14)	0.1221 (8)
O2	-0.0604 (2)	1.1356 (2)	-0.30513 (13)	0.0641 (5)
O3	-0.1769 (2)	0.91403 (17)	-0.11175 (13)	0.0591 (5)
O4	0.32910 (19)	1.06151 (17)	-0.14001 (13)	0.0621 (5)
O5	0.18882 (18)	0.46876 (16)	0.09178 (12)	0.0594 (5)
N6	0.0690 (2)	1.01919 (18)	-0.13490 (14)	0.0458 (5)

N7	-0.0049 (2)	0.79320 (18)	-0.12864 (13)	0.0459 (5)
H7	-0.0661	0.7084	-0.1313	0.055*
N8	0.3607 (2)	0.67071 (18)	0.07755 (14)	0.0447 (5)
H8	0.4547	0.7397	0.1050	0.054*
C9	-0.4037 (4)	1.1332 (3)	-0.5707 (3)	0.0780 (10)
C10	-0.4070 (4)	1.1951 (3)	-0.4784 (3)	0.0768 (9)
H10	-0.4858	1.2350	-0.4762	0.092*
C11	-0.2930 (3)	1.1989 (3)	-0.3869 (2)	0.0626 (7)
H11	-0.2940	1.2426	-0.3231	0.075*
C12	-0.1786 (3)	1.1383 (3)	-0.39054 (19)	0.0532 (7)
C13	-0.1785 (3)	1.0763 (3)	-0.4859 (2)	0.0733 (8)
H13	-0.1014	1.0347	-0.4891	0.088*
C14	-0.2902 (4)	1.0748 (4)	-0.5763 (2)	0.0835 (10)
H14	-0.2879	1.0343	-0.6404	0.100*
C15	-0.0734 (3)	1.1746 (3)	-0.20599 (18)	0.0560 (7)
H15A	-0.1757	1.1104	-0.2052	0.067*
H15B	-0.0723	1.2721	-0.1916	0.067*
C16	0.0680 (3)	1.1645 (2)	-0.12513 (19)	0.0585 (7)
H16A	0.1691	1.2258	-0.1293	0.070*
H16B	0.0656	1.2010	-0.0571	0.070*
C17	-0.0530 (3)	0.9055 (2)	-0.12341 (17)	0.0447 (6)
C18	0.2006 (3)	0.9841 (2)	-0.13550 (16)	0.0458 (6)
C19	0.1618 (2)	0.8280 (2)	-0.12944 (16)	0.0393 (5)
C20	0.2797 (3)	0.8245 (2)	-0.02788 (16)	0.0402 (6)
H20A	0.3916	0.8675	-0.0249	0.048*
H20B	0.2671	0.8808	0.0304	0.048*
C21	0.2468 (3)	0.6706 (2)	-0.01947 (16)	0.0411 (6)
H21	0.1354	0.6307	-0.0189	0.049*
C22	0.2571 (3)	0.5788 (3)	-0.11345 (19)	0.0598 (7)
H22A	0.3678	0.6149	-0.1138	0.072*
H22B	0.2324	0.4805	-0.1083	0.072*
C23	0.1382 (3)	0.5806 (3)	-0.21441 (19)	0.0645 (8)
H23A	0.0267	0.5373	-0.2168	0.077*
H23B	0.1504	0.5240	-0.2727	0.077*
C24	0.1700 (3)	0.7340 (3)	-0.22326 (18)	0.0571 (7)
H24A	0.0890	0.7334	-0.2860	0.069*
H24B	0.2773	0.7738	-0.2282	0.069*
C25	0.3252 (3)	0.5671 (2)	0.12644 (17)	0.0408 (6)
C26	0.4538 (2)	0.5767 (2)	0.22404 (17)	0.0391 (5)
C27	0.6002 (3)	0.6884 (3)	0.27164 (19)	0.0662 (8)
H27	0.6238	0.7647	0.2420	0.079*
C28	0.7148 (3)	0.6921 (3)	0.3625 (2)	0.0723 (9)
H28	0.8133	0.7705	0.3921	0.087*
C29	0.6874 (3)	0.5846 (3)	0.40928 (19)	0.0638 (8)
C30	0.5429 (4)	0.4727 (4)	0.3620 (3)	0.1180 (16)
H30	0.5198	0.3969	0.3922	0.142*
C31	0.4285 (3)	0.4671 (3)	0.2704 (3)	0.1025 (13)
H31	0.3321	0.3868	0.2397	0.123*
C32	0.8132 (4)	0.5897 (4)	0.5090 (2)	0.1124 (14)

H32A	0.7719	0.5052	0.5309	0.169*
H32B	0.8347	0.6739	0.5619	0.169*
H32C	0.9127	0.5933	0.4975	0.169*

Atomic displacement parameters (\AA^2)

O3-C17

O4-C18

O5-C25

N6-C18

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.1175 (15)	0.1150 (16)	0.0906 (13)	0.0165 (13)	-0.0120 (12)	0.0524 (12)
02	0.0677 (11)	0.0840 (14)	0.0567 (11)	0.0419 (10)	0.0252 (9)	0.0281 (10)
O3	0.0558 (11)	0.0495 (10)	0.0745 (12)	0.0177 (9)	0.0234 (10)	0.0255 (9)
O4	0.0522 (10)	0.0471 (10)	0.0820 (12)	0.0029 (8)	0.0205 (9)	0.0392 (9)
O5	0.0469 (10)	0.0457 (10)	0.0702 (11)	-0.0024 (8)	0.0085 (9)	0.0339 (9)
N6	0.0492 (11)	0.0292 (10)	0.0504 (11)	0.0061 (9)	0.0094 (10)	0.0186 (9)
N7	0.0410 (10)	0.0278 (10)	0.0575 (12)	0.0006 (8)	0.0088 (9)	0.0200 (9)
N8	0.0381 (10)	0.0322 (10)	0.0571 (11)	0.0031 (8)	0.0111 (9)	0.0236 (9)
C9	0.078 (2)	0.071 (2)	0.067 (2)	0.0094 (17)	0.0062 (18)	0.0400 (18)
C10	0.077 (2)	0.075 (2)	0.091 (2)	0.0356 (17)	0.0264 (19)	0.0465 (19)
C11	0.0764 (19)	0.0647 (18)	0.0670 (17)	0.0395 (16)	0.0321 (16)	0.0322 (15)
C12	0.0574 (15)	0.0552 (15)	0.0560 (16)	0.0213 (13)	0.0253 (14)	0.0277 (13)
C13	0.0655 (18)	0.088 (2)	0.067 (2)	0.0270 (17)	0.0276 (16)	0.0163 (17)
C14	0.094 (2)	0.084 (2)	0.0567 (19)	0.011 (2)	0.0255 (19)	0.0180 (17)
C15	0.0770 (18)	0.0440 (14)	0.0574 (16)	0.0267 (13)	0.0279 (14)	0.0244 (13)
C16	0.0807 (18)	0.0293 (12)	0.0588 (15)	0.0152 (12)	0.0164 (14)	0.0185 (12)
C17	0.0451 (14)	0.0358 (13)	0.0418 (13)	0.0047 (11)	0.0057 (11)	0.0175 (11)
C18	0.0488 (14)	0.0351 (12)	0.0381 (12)	0.0004 (12)	0.0041 (11)	0.0182 (11)
C19	0.0408 (12)	0.0308 (11)	0.0415 (13)	0.0054 (10)	0.0116 (10)	0.0168 (10)
C20	0.0437 (12)	0.0306 (12)	0.0428 (12)	0.0062 (10)	0.0149 (11)	0.0155 (10)
C21	0.0406 (12)	0.0327 (12)	0.0490 (13)	0.0083 (10)	0.0150 (11)	0.0196 (11)
C22	0.0767 (18)	0.0399 (14)	0.0686 (17)	0.0234 (13)	0.0290 (15)	0.0192 (13)
C23	0.089 (2)	0.0459 (15)	0.0531 (15)	0.0195 (14)	0.0259 (15)	0.0058 (13)
C24	0.0681 (17)	0.0527 (15)	0.0434 (14)	0.0113 (13)	0.0174 (13)	0.0190 (13)
C25	0.0421 (12)	0.0301 (12)	0.0529 (13)	0.0106 (10)	0.0192 (11)	0.0191 (11)
C26	0.0404 (12)	0.0315 (12)	0.0490 (13)	0.0121 (10)	0.0186 (11)	0.0175 (10)
C27	0.0681 (17)	0.0468 (15)	0.0579 (15)	-0.0049 (13)	0.0059 (14)	0.0257 (13)
C28	0.0620 (17)	0.0583 (18)	0.0632 (17)	-0.0048 (14)	-0.0006 (14)	0.0215 (15)
C29	0.0542 (15)	0.0684 (18)	0.0593 (16)	0.0170 (14)	0.0058 (13)	0.0281 (14)
C30	0.078 (2)	0.092 (2)	0.133 (3)	-0.0113 (19)	-0.023 (2)	0.086 (2)
C31	0.0685 (19)	0.070 (2)	0.117 (3)	-0.0167 (16)	-0.0207 (18)	0.067 (2)
C32	0.082 (2)	0.121 (3)	0.092 (2)	0.010 (2)	-0.0166 (19)	0.055 (2)
Geometric parat	neters (Å, °)					
F1—C9		1.360 (3)	C19—C	24	1.522	(3)
O2—C12		1.372 (3)	C19—C	20	1.529	(3)
O2—C15		1.423 (3)	C20—C	21	1.523	(3)

C20-H20A

C20—H20B

C21—C22

C21—H21

1.216 (3)

1.226 (2)

1.239 (2)

1.355 (3)

0.9700

0.9700

0.9800

1.522 (3)

N6—C17	1.408 (3)	C22—C23	1.520 (3)
N6—C16	1.455 (3)	C22—H22A	0.9700
N7—C17	1.332 (3)	C22—H22B	0.9700
N7—C19	1.462 (3)	C23—C24	1.521 (3)
N7—H7	0.8600	С23—Н23А	0.9700
N8—C25	1.348 (2)	С23—Н23В	0.9700
N8—C21	1.453 (3)	C24—H24A	0.9700
N8—H8	0.8600	C24—H24B	0.9700
C9—C10	1.350 (4)	C25—C26	1.490 (3)
C9—C14	1.353 (4)	C26—C27	1.362 (3)
C10—C11	1.385 (4)	C26—C31	1.364 (3)
C10—H10	0.9300	C27—C28	1.381 (3)
C11—C12	1.369 (3)	С27—Н27	0.9300
C11—H11	0.9300	C28—C29	1.351 (3)
C12—C13	1.377 (4)	C28—H28	0.9300
C13—C14	1.372 (4)	C29—C30	1.352 (4)
С13—Н13	0.9300	C29—C32	1.513 (4)
C14—H14	0.9300	C30—C31	1.381 (4)
C15—C16	1.496 (3)	С30—Н30	0.9300
C15—H15A	0.9700	C31—H31	0.9300
C15—H15B	0.9700	C32—H32A	0.9600
C16—H16A	0.9700	C32—H32B	0.9600
C16—H16B	0.9700	С32—Н32С	0.9600
C18—C19	1.531 (3)		
C12—O2—C15	118.2 (2)	C21—C20—H20B	109.4
C18—N6—C17	111.22 (18)	C19—C20—H20B	109.4
C18—N6—C16	123.88 (18)	H20A—C20—H20B	108.0
C17—N6—C16	123.7 (2)	N8—C21—C22	112.08 (19)
C17—N7—C19	113.54 (17)	N8—C21—C20	109.75 (17)
C17—N7—H7	123.2	C22—C21—C20	110.07 (16)
C19—N7—H7	123.2	N8—C21—H21	108.3
C25—N8—C21	122.74 (17)	C22—C21—H21	108.3
C25—N8—H8	118.6	C20-C21-H21	108.3
C21—N8—H8	118.6	C23—C22—C21	111.5 (2)
C10-C9-C14	121.4 (3)	C23—C22—H22A	109.3
C10-C9-F1	120.1 (4)	C21—C22—H22A	109.3
C14—C9—F1	118.5 (4)	С23—С22—Н22В	109.3
C9—C10—C11	119.9 (3)	C21—C22—H22B	109.3
С9—С10—Н10	120.0	H22A—C22—H22B	108.0
C11—C10—H10	120.0	C22—C23—C24	110.7 (2)
C12—C11—C10	119.8 (3)	С22—С23—Н23А	109.5
C12—C11—H11	120.1	C24—C23—H23A	109.5
C10-C11-H11	120.1	C22—C23—H23B	109.5
C11—C12—O2	124.8 (2)	С24—С23—Н23В	109.5
C11—C12—C13	118.9 (3)	H23A—C23—H23B	108.1
O2-C12-C13	116.3 (3)	C23—C24—C19	110.85 (17)
C14—C13—C12	121.1 (3)	C23—C24—H24A	109.5
C14—C13—H13	119.5	C19—C24—H24A	109.5
C12—C13—H13	119.5	C23—C24—H24B	109.5

C9—C14—C13	118.9 (3)	C19—C24—H24B	109.5
C9—C14—H14	120.5	H24A—C24—H24B	108.1
C13—C14—H14	120.5	O5-C25-N8	120.7 (2)
O2-C15-C16	108.8 (2)	O5-C25-C26	121.51 (17)
O2—C15—H15A	109.9	N8—C25—C26	117.78 (18)
C16—C15—H15A	109.9	C27—C26—C31	115.8 (2)
O2-C15-H15B	109.9	C27—C26—C25	124.64 (18)
C16-C15-H15B	109.9	C31—C26—C25	119.5 (2)
H15A—C15—H15B	108.3	C26—C27—C28	122.2 (2)
N6-C16-C15	114.0 (2)	С26—С27—Н27	118.9
N6—C16—H16A	108.7	С28—С27—Н27	118.9
C15—C16—H16A	108.7	C29—C28—C27	121.6 (2)
N6—C16—H16B	108.7	С29—С28—Н28	119.2
C15—C16—H16B	108.7	С27—С28—Н28	119.2
H16A—C16—H16B	107.6	C28—C29—C30	116.6 (2)
O3—C17—N7	128.92 (19)	C28—C29—C32	121.3 (2)
O3—C17—N6	124.1 (2)	C30—C29—C32	122.1 (2)
N7—C17—N6	106.9 (2)	C29—C30—C31	122.2 (2)
O4—C18—N6	127.1 (2)	С29—С30—Н30	118.9
O4—C18—C19	125.1 (2)	С31—С30—Н30	118.9
N6-C18-C19	107.82 (17)	C26—C31—C30	121.5 (2)
N7—C19—C24	112.72 (18)	С26—С31—Н31	119.2
N7—C19—C20	111.68 (16)	C30—C31—H31	119.2
C24—C19—C20	111.41 (19)	C29—C32—H32A	109.5
N7—C19—C18	99.91 (19)	С29—С32—Н32В	109.5
C24—C19—C18	111.22 (16)	H32A—C32—H32B	109.5
C20-C19-C18	109.34 (17)	С29—С32—Н32С	109.5
C21—C20—C19	111.03 (17)	H32A—C32—H32C	109.5
C21—C20—H20A	109.4	H32B—C32—H32C	109.5
C19—C20—H20A	109.4		
C14—C9—C10—C11	-0.4(4)	O4—C18—C19—C20	64.1 (3)
F1—C9—C10—C11	177.8 (2)	N6-C18-C19-C20	-115.9 (2)
C9—C10—C11—C12	-0.8 (4)	N7—C19—C20—C21	71.2 (2)
C10-C11-C12-O2	-179.9(2)	C24—C19—C20—C21	-55.8 (2)
C10-C11-C12-C13	0.9 (4)	C18—C19—C20—C21	-179.18 (19)
C15—O2—C12—C11	11.8 (3)	C25—N8—C21—C22	-84.7 (2)
C15—O2—C12—C13	-168.9 (2)	C25—N8—C21—C20	152.6 (2)
C11—C12—C13—C14	0.1 (4)	C19—C20—C21—N8	179.89 (18)
O2—C12—C13—C14	-179.2 (2)	C19—C20—C21—C22	56.1 (2)
C10-C9-C14-C13	1.4 (4)	N8—C21—C22—C23	-179.60 (16)
F1—C9—C14—C13	-176.8 (2)	C20—C21—C22—C23	-57.2 (2)
C12—C13—C14—C9	-1.2 (4)	C21—C22—C23—C24	57.2 (3)
C12—O2—C15—C16	-179.74 (19)	C22—C23—C24—C19	-55.8 (3)
C18—N6—C16—C15	129.5 (2)	N7—C19—C24—C23	-71.1 (2)
C17—N6—C16—C15	-64.1 (3)	C20—C19—C24—C23	55.4 (3)
O2-C15-C16-N6	-64.6 (2)	C18—C19—C24—C23	177.7 (2)
C19—N7—C17—O3	-172.4 (2)	C21—N8—C25—O5	-2.8 (3)
C19—N7—C17—N6	8.0 (2)	C21—N8—C25—C26	178.4 (2)
C18—N6—C17—O3	173.5 (2)	O5—C25—C26—C27	-173.7 (2)

C16—N6—C17—O3	5.6 (3)	N8—C25—C26—C27	5.1 (3)
C18—N6—C17—N7	-6.9 (2)	O5-C25-C26-C31	7.3 (4)
C16—N6—C17—N7	-174.82 (19)	N8-C25-C26-C31	-173.8 (3)
C17—N6—C18—O4	-176.8 (2)	C31—C26—C27—C28	-1.3 (4)
C16—N6—C18—O4	-8.9 (4)	C25—C26—C27—C28	179.7 (3)
C17-N6-C18-C19	3.2 (2)	C26—C27—C28—C29	-0.2 (5)
C16-N6-C18-C19	171.07 (18)	C27—C28—C29—C30	0.7 (5)
C17—N7—C19—C24	-124.0 (2)	C27—C28—C29—C32	-179.7 (3)
C17—N7—C19—C20	109.7 (2)	C28-C29-C30-C31	0.2 (6)
C17—N7—C19—C18	-5.9 (2)	C32—C29—C30—C31	-179.4 (4)
O4—C18—C19—N7	-178.6 (2)	C27—C26—C31—C30	2.2 (5)
N6—C18—C19—N7	1.4 (2)	C25-C26-C31-C30	-178.7 (3)
O4-C18-C19-C24	-59.4 (3)	C29—C30—C31—C26	-1.7 (6)
N6-C18-C19-C24	120.6 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$			
N7—H7···O5 ⁱ	0.86	2.06	2.892 (3)	163			
N8—H8···O4 ⁱⁱ	0.86	2.22	3.060 (3)	165			
C27—H27···O4 ⁱⁱ	0.93	2.45	3.370 (3)	172			
Symmetry codes: (i) $-x$, $-y+1$, $-z$; (ii) $-x+1$, $-y+2$, $-z$.							

